Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 300(5): 107259, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582453

RESUMO

Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI. Herein, we developed a mouse model of nervous system-restricted SELENOI deficiency that circumvents embryonic lethality caused by constitutive deletion and recapitulates phenotypic features of hereditary spastic paraplegia. Resulting mice exhibited pronounced alterations in brain lipid composition, which coincided with motor deficits and neuropathology including hypomyelination, elevated reactive gliosis, and microcephaly. Further studies revealed increased lipid peroxidation in oligodendrocyte lineage cells and disrupted oligodendrocyte maturation both in vivo and in vitro. Altogether, these findings detail a critical role for SELENOI-derived plasmenyl-PE in myelination that is of paramount importance for neurodevelopment.

2.
J Leukoc Biol ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289835

RESUMO

The mechanisms driving metabolic reprogramming during B cell activation are unclear, particularly roles for enzymatic pathways involved in lipid remodeling. We found that murine B cell activation with lipopolysaccharide (LPS) led to a 1.6-fold increase in total lipids that included higher levels of phosphatidylethanolamine (PE) and plasmenyl PE. Selenoprotein I (SELENOI) is an[62] ethanolamine phospholipid transferase involved in the synthesis of both PE and plasmenyl PE, and SELENOI expression was also upregulated during activation. Selenoi knockout (KO) B cells exhibited decreased levels of plasmenyl PE, which plays an important antioxidant role. Lipid peroxidation was measured and found to increase ∼2-fold in KO versus WT B cells. Cell death was not impacted by KO in LPS-treated B cells and proliferation was only slightly reduced, but differentiation into CD138 + Blimp-1+ plasma B cells was decreased ∼2-fold. This led to examination of B cell receptors important for differentiation that recognize the ligand B cell activating factor (BAFF), and levels of the transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI; CD267) were significantly decreased on KO B cells compared to WT controls. Vaccination with ovalbumin (OVA)/adjuvant led to decreased OVA-specific IgM levels in sera of KO mice compared to WT mice. Real-time PCR analyses revealed a decreased switch from surface to secreted IgM in spleens of KO mice induced by vaccination or LP-BM5 retrovirus infection. Overall, these findings detail the lipidomic response of B cells to LPS activation and reveal the importance of upregulated SELENOI for promoting differentiation into IgM secreting plasma B cells.

3.
Am J Respir Cell Mol Biol ; 69(6): 666-677, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552821

RESUMO

Eosinophils (Eos) reside in multiple organs during homeostasis and respond rapidly to an inflammatory challenge. Although Eos share chemical staining properties, they also demonstrate phenotypic and functional plasticity that is not fully understood. Here, we used a murine model of allergic lung inflammation to characterize Eos subsets and determine their spatiotemporal and functional regulation during inflammation and its resolution in response to resolvin D2 (RvD2), a potent specialized proresolving mediator. Two Eos subsets were identified by CD101 expression with distinct anatomic localization and transcriptional signatures at baseline and during inflammation. CD101low Eos were predominantly located in a lung vascular niche and responded to allergen challenge by moving into the lung interstitium. CD101high Eos were predominantly located in bronchoalveolar lavage (BAL) and extravascular lung, only present during inflammation, and had transcriptional evidence for cell activation. RvD2 reduced total Eos numbers and changed their phenotype and activation by at least two distinct mechanisms: decreasing interleukin 5-dependent recruitment of CD101low Eos and decreasing conversion of CD101low Eos to CD101high Eos. Collectively, these findings indicate that Eos are a heterogeneous pool of cells with distinct activation states and spatiotemporal regulation during resolution of inflammation and that RvD2 is a potent proresolving mediator for Eos recruitment and activation.


Assuntos
Alveolite Alérgica Extrínseca , Pneumonia , Eosinofilia Pulmonar , Camundongos , Animais , Eosinófilos/metabolismo , Líquido da Lavagem Broncoalveolar , Eosinofilia Pulmonar/metabolismo , Inflamação/metabolismo , Pneumonia/metabolismo , Fenótipo
4.
Proc Natl Acad Sci U S A ; 120(31): e2302938120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487095

RESUMO

Neutrophils are the primary cell type involved in lung ischemia-reperfusion injury (IRI), which remains a frequent and morbid complication after organ transplantation. Endogenous lipid mediators that become activated during acute inflammation-resolution have gained increasing recognition for their protective role(s) in promoting the restoration of homeostasis, but their influence on early immune responses following transplantation remains to be uncovered. Resolvin D1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid (RvD1), is a potent stereoselective mediator that exhibits proresolving and anti-inflammatory actions in the setting of tissue injury. Here, using metabololipidomics, we demonstrate that endogenous proresolving mediators including RvD1 are increased in human and murine lung grafts immediately following transplantation. In mouse grafts, we observe lipid mediator class switching early after reperfusion. We use intravital two-photon microscopy to reveal that RvD1 treatment significantly limits early neutrophil infiltration and swarming, thereby ameliorating early graft dysfunction in transplanted syngeneic lungs subjected to severe IRI. Through integrated analysis of single-cell RNA sequencing data of donor and recipient immune cells from lung grafts, we identify transcriptomic changes induced by RvD1. These results support a role for RvD1 as a potent modality for preventing early neutrophil-mediated tissue damage after lung IRI that may be therapeutic in the clinics.


Assuntos
Ácidos Docosa-Hexaenoicos , Transplante de Órgãos , Humanos , Animais , Camundongos , Neutrófilos , Pulmão
5.
iScience ; 25(10): 105226, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36267914

RESUMO

Neutrophil swarming is an emergent host defense mechanism triggered by targets larger than a single neutrophil's capacity to phagocytose. Swarming synergizes neutrophil functions, including chemotaxis, phagocytosis, and reactive oxygen species (ROS) production, and coordinates their deployment by many interacting neutrophils. The potent inflammatory lipid mediator leukotriene B4 (LTB4) has been established as central to orchestrating neutrophil activities during swarming. However, the details regarding how this eicosanoid choreographs the neutrophils involved in swarming are not well explained. Here we leverage microfluidics, genetically deficient mouse cells, and targeted metabolipidomic analysis to demonstrate that transcellular biosynthesis occurs among neutrophils to generate LTB4. Furthermore, transcellular biosynthesis is an entirely sufficient means of generating LTB4 for the purposes of orchestrating neutrophil swarming. These results further our understanding of how neutrophils coordinate their activities during swarming, which will be critical in the design of eventual therapies that can harness the power of swarming behavior.

6.
mBio ; 13(4): e0126722, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913160

RESUMO

Influenza A virus (IAV) infections are a leading cause of mortality worldwide. Excess mortality during IAV epidemics and pandemics is attributable to secondary bacterial infections, particularly pneumonia caused by Streptococcus pneumoniae. Resident alveolar macrophages (rAMs) are early responders to respiratory infections that coordinate initial host defense responses. Maresin conjugates in tissue regeneration (MCTRs) are recently elucidated cysteinyl maresins that are produced by and act on macrophages. Roles for MCTRs in responses to respiratory infections remain to be determined. Here, IAV infection led to transient decreases in rAM numbers. Repopulated lung macrophages displayed transcriptional alterations 21 days post-IAV with prolonged susceptibility to secondary pneumococcal infection. Administration of a mix of MCTR1 to 3 or MCTR3 alone post-IAV decreased lung inflammation and bacterial load 48 and 72 h after secondary pneumococcal infection. MCTR-exposed rAMs had increased migration and phagocytosis of Streptococcus pneumoniae, reduced secretion of CXCL1, and a reversion toward baseline levels of several IAV-induced pneumonia susceptibility genes. Together, MCTRs counter regulated post-IAV changes in rAMs to promote a rapid return of bacteria host defense. IMPORTANCE Secondary bacterial pneumonia is a serious and common complication of IAV infection, leading to excess morbidity and mortality. New host-directed approaches are needed to complement antibiotics to better address this important global infectious disease. Here, we show that harnessing endogenous resolution mechanisms for inflammation by exogenous administration of a family of specialized proresolving mediators (i.e., cys-MCTRs) increased macrophage resilience mechanisms after IAV to protect against secondary infection from Streptococcus pneumoniae.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Pneumocócicas , Pneumonia Bacteriana , Infecções Respiratórias , Animais , Coinfecção/microbiologia , Humanos , Influenza Humana/complicações , Pulmão/microbiologia , Macrófagos , Masculino , Camundongos , Infecções Pneumocócicas/complicações , Infecções Respiratórias/complicações , Ovinos , Streptococcus pneumoniae
7.
Biochem Pharmacol ; 203: 115181, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850309

RESUMO

The production of specialized pro-resolving mediators (SPMs) during the resolution phase in the inflammatory milieu is key to orchestrating the resolution of the acute inflammatory response. 17-epi-neuroprotectin D1/17-epi-protectin D1 (17-epi-NPD1/17-epi-PD1: 10R,17R-dihydroxy-4Z,7Z,11E,13E,15Z,19Z-docosahexaenoic acid) is an SPM of the protectin family, biosynthesized from docosahexaenoic acid (DHA), that exhibits both potent anti-inflammatory and neuroprotective functions. Here, we carried out a new commercial-scale synthesis of 17-epi-NPD1/17-epi-PD1 that enabled the authentication and confirmation of its potent bioactions in vivo and determination of its ability to activate human leukocyte phagocytosis. We provide evidence that this new synthetic 17-epi-NPD1/17-epi-PD1 statistically significantly increases human macrophage uptake of E. coli in vitro and confirm that it limits neutrophilic infiltration in vivo in a murine model of peritonitis. The physical properties of the new synthetic 17-epi-NPD1/17-epi-PD1, namely its ultra-violet absorbance, chromatography, and tandem mass spectrometry fragmentation pattern, matched those of the originally synthesized 17-epi-NPD1/17-epi-PD1. In addition, we verified the structure and complete stereochemical assignment of this new synthetic 17-epi-NPD1/17-epi-PD1 using nuclear magnetic resonance (NMR) spectroscopy. Together, these results authenticate this 17-epi-NPD1/17-epi-PD1 for its structure and potent pro-resolving functions.


Assuntos
Ácidos Docosa-Hexaenoicos , Escherichia coli , Animais , Ácidos Docosa-Hexaenoicos/química , Humanos , Inflamação , Macrófagos , Camundongos
8.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911767

RESUMO

Human phagocytes have key functions in the resolution of inflammation. Here, we assessed the role of the proposed 4S,5S-epoxy-resolvin intermediate in the biosynthesis of both resolvin D3 and resolvin D4. We found that human neutrophils converted this synthetic intermediate to resolvin D3 and resolvin D4. M2 macrophages transformed this labile epoxide intermediate to resolvin D4 and a previously unknown cysteinyl-resolvin isomer without appreciable amounts of resolvin D3. M2 macrophages play critical roles in the resolution of inflammation and in wound healing. Human M2 macrophages also converted leukotriene A4 to lipoxins. The cysteinyl-resolvin isomer significantly accelerated tissue regeneration of surgically injured planaria. In a model of human granuloma formation, the cysteinyl-resolvin isomer significantly inhibited granuloma development by human peripheral blood leukocytes. Together, these results provide evidence for a human cell type-specific role of 4S,5S-epoxy-resolvin in the biosynthesis of resolvin D3 by neutrophils, resolvin D4 by both M2 macrophages and neutrophils, and a unique cysteinyl-resolvin isomer produced by M2 macrophages that carries potent biological activities in granuloma formation and tissue regeneration.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Leucócitos/metabolismo , Macrófagos/metabolismo , Células Cultivadas , Granuloma , Humanos
9.
Front Immunol ; 12: 701341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777335

RESUMO

The essential micronutrient Selenium (Se) is co-translationally incorporated as selenocysteine into proteins. Selenoproteins contain one or more selenocysteines and are vital for optimum immunity. Interestingly, many pathogenic bacteria utilize Se for various biological processes suggesting that Se may play a role in bacterial pathogenesis. A previous study had speculated that Francisella tularensis, a facultative intracellular bacterium and the causative agent of tularemia, sequesters Se by upregulating Se-metabolism genes in type II alveolar epithelial cells. Therefore, we investigated the contribution of host vs. pathogen-associated selenoproteins in bacterial disease using F. tularensis as a model organism. We found that F. tularensis was devoid of any Se utilization traits, neither incorporated elemental Se, nor exhibited Se-dependent growth. However, 100% of Se-deficient mice (0.01 ppm Se), which express low levels of selenoproteins, succumbed to F. tularensis-live vaccine strain pulmonary challenge, whereas 50% of mice on Se-supplemented (0.4 ppm Se) and 25% of mice on Se-adequate (0.1 ppm Se) diet succumbed to infection. Median survival time for Se-deficient mice was 8 days post-infection while Se-supplemented and -adequate mice was 11.5 and >14 days post-infection, respectively. Se-deficient macrophages permitted significantly higher intracellular bacterial replication than Se-supplemented macrophages ex vivo, corroborating in vivo observations. Since Francisella replicates in alveolar macrophages during the acute phase of pneumonic infection, we hypothesized that macrophage-specific host selenoproteins may restrict replication and systemic spread of bacteria. F. tularensis infection led to an increased expression of several macrophage selenoproteins, suggesting their key role in limiting bacterial replication. Upon challenge with F. tularensis, mice lacking selenoproteins in macrophages (TrspM) displayed lower survival and increased bacterial burden in the lung and systemic tissues in comparison to WT littermate controls. Furthermore, macrophages from TrspM mice were unable to restrict bacterial replication ex vivo in comparison to macrophages from littermate controls. We herein describe a novel function of host macrophage-specific selenoproteins in restriction of intracellular bacterial replication. These data suggest that host selenoproteins may be considered as novel targets for modulating immune response to control a bacterial infection.


Assuntos
Francisella tularensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Selenoproteínas/metabolismo , Tularemia/etiologia , Tularemia/metabolismo , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Camundongos , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/microbiologia , Pneumonia/patologia , Tularemia/mortalidade , Virulência/genética , Fatores de Virulência/genética
10.
Front Immunol ; 12: 704427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489955

RESUMO

Viral pneumonias are a major cause of morbidity and mortality, owing in part to dysregulated excessive lung inflammation, and therapies to modulate host responses to viral lung injury are urgently needed. Protectin conjugates in tissue regeneration 1 (PCTR1) and protectin D1 (PD1) are specialized pro-resolving mediators (SPMs) whose roles in viral pneumonia are of interest. In a mouse model of Respiratory Syncytial Virus (RSV) pneumonia, intranasal PCTR1 and PD1 each decreased RSV genomic viral load in lung tissue when given after RSV infection. Concurrent with enhanced viral clearance, PCTR1 administration post-infection, decreased eosinophils, neutrophils, and NK cells, including NKG2D+ activated NK cells, in the lung. Intranasal PD1 administration post-infection decreased lung eosinophils and Il-13 expression. PCTR1 increased lung expression of cathelicidin anti-microbial peptide and decreased interferon-gamma production by lung CD4+ T cells. PCTR1 and PD1 each increased interferon-lambda expression in human bronchial epithelial cells in vitro and attenuated RSV-induced suppression of interferon-lambda in mouse lung in vivo. Liquid chromatography coupled with tandem mass spectrometry of RSV-infected and untreated mouse lungs demonstrated endogenous PCTR1 and PD1 that decreased early in the time course while cysteinyl-leukotrienes (cys-LTs) increased during early infection. As RSV infection resolved, PCTR1 and PD1 increased and cys-LTs decreased to pre-infection levels. Together, these results indicate that PCTR1 and PD1 are each regulated during RSV pneumonia, with overlapping and distinct mechanisms for PCTR1 and PD1 during the resolution of viral infection and its associated inflammation.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Pulmão/imunologia , Pneumonia Viral , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios/imunologia , Administração Intranasal , Animais , Inflamação/imunologia , Inflamação/prevenção & controle , Pulmão/virologia , Masculino , Camundongos , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Carga Viral/efeitos dos fármacos
11.
Am J Pathol ; 191(6): 1049-1063, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689792

RESUMO

Tissue injury elicits an inflammatory response that facilitates host defense. Resolution of inflammation promotes the transition to tissue repair and is governed, in part, by specialized pro-resolving mediators (SPM). The complete structures of a novel series of cysteinyl-SPM (cys-SPM) were recently elucidated, and proved to stimulate tissue regeneration in planaria and resolve acute inflammation in mice. Their functions in mammalian tissue repair are of interest. Here, nine structurally distinct cys-SPM were screened and PCTR1 uniquely enhanced human keratinocyte migration with efficacy similar to epidermal growth factor. In skin wounds of mice, PCTR1 accelerated closure. Wound infection increased PCTR1 that coincided with decreased bacterial burden. Addition of PCTR1 reduced wound bacteria levels and decreased inflammatory monocytes/macrophages, which was coupled with increased expression of genes involved in host defense and tissue repair. These results suggest that PCTR1 is a novel regulator of host defense and tissue repair, which could inform new approaches for therapeutic management of delayed tissue repair and infection.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Mediadores da Inflamação/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Infecção dos Ferimentos/metabolismo , Animais , Movimento Celular/fisiologia , Humanos , Queratinócitos/metabolismo , Camundongos
12.
J Biol Chem ; 296: 100410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581115

RESUMO

Trace element selenium (Se) is incorporated as the 21st amino acid, selenocysteine, into selenoproteins through tRNA[Ser]Sec. Selenoproteins act as gatekeepers of redox homeostasis and modulate immune function to effect anti-inflammation and resolution. However, mechanistic underpinnings involving metabolic reprogramming during inflammation and resolution remain poorly understood. Bacterial endotoxin lipopolysaccharide (LPS) activation of murine bone marrow-derived macrophages cultured in the presence or absence of Se (as selenite) was used to examine temporal changes in the proteome and metabolome by multiplexed tandem mass tag-quantitative proteomics, metabolomics, and machine-learning approaches. Kinetic deltagram and clustering analysis indicated that addition of Se led to extensive reprogramming of cellular metabolism upon stimulation with LPS enhancing the pentose phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation, to aid in the phenotypic transition toward alternatively activated macrophages, synonymous with resolution of inflammation. Remodeling of metabolic pathways and consequent metabolic adaptation toward proresolving phenotypes began with Se treatment at 0 h and became most prominent around 8 h after LPS stimulation that included succinate dehydrogenase complex, pyruvate kinase, and sedoheptulokinase. Se-dependent modulation of these pathways predisposed bone marrow-derived macrophages to preferentially increase oxidative phosphorylation to efficiently regulate inflammation and its timely resolution. The use of macrophages lacking selenoproteins indicated that all three metabolic nodes were sensitive to selenoproteome expression. Furthermore, inhibition of succinate dehydrogenase complex with dimethylmalonate affected the proresolving effects of Se by increasing the resolution interval in a murine peritonitis model. In summary, our studies provide novel insights into the role of cellular Se via metabolic reprograming to facilitate anti-inflammation and proresolution.


Assuntos
Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Suscetibilidade a Doenças/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peritonite/tratamento farmacológico , Peritonite/imunologia , Proteoma/metabolismo , Proteômica , Selênio/farmacologia , Selenoproteínas/genética , Selenoproteínas/fisiologia , Succinato Desidrogenase/metabolismo
13.
Front Immunol ; 11: 631319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643307

RESUMO

The resolution of the acute inflammatory response is governed by phagocytes actively clearing apoptotic cells and pathogens. Biosynthesis of the specialized pro-resolving mediators (SPMs) is pivotal in the resolution of inflammation via their roles in innate immune cells. Resolvin E4 (RvE4: 5S,15S-dihydroxy-eicosapentaenoic acid) is a newly uncovered member of the E-series resolvins biosynthesized from eicosapentaenoic acid (EPA) recently elucidated in physiologic hypoxia. This new resolvin was termed RvE4 given its ability to increase efferocytosis of apoptotic cells by macrophages. Herein, we report on the total organic synthesis of RvE4 confirming its unique structure, complete stereochemistry assignment and function. This synthetic RvE4 matched the physical properties of biogenic RvE4 material, i.e. ultra-violet (UV) absorbance, chromatographic behavior, and tandem mass spectrometry (MS2) fragmentation, as well as bioactivity. We confirmed RvE4 potent responses with human M2 macrophage efferocytosis of human apoptotic neutrophils and senescent red blood cells. Together, these results provide direct evidence for the assignment of the complete stereochemistry of RvE4 as 5S,15S-dihydroxy-6E,8Z,11Z,13E,17Z-eicosapentaenoic acid and its bioactions in human phagocyte response.


Assuntos
Anti-Inflamatórios , Apoptose/efeitos dos fármacos , Ácidos Graxos Insaturados , Macrófagos/imunologia , Neutrófilos/imunologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Apoptose/imunologia , Ácidos Graxos Insaturados/síntese química , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia
14.
FASEB J ; 33(12): 13794-13807, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31589826

RESUMO

Resolution of inflammation is an active process regulated by specialized proresolving mediators where we identified 3 new pathways producing allylic epoxide-derived mediators that stimulate regeneration [i.e., peptido-conjugates in tissue regeneration (CTRs)]. Here, using self-limited Escherichia coli peritonitis in mice, we identified endogenous maresin (MaR) CTR (MCTR), protectin (PD) CTR (PCTR), and resolvin CTR in infectious peritoneal exudates and distal spleens, as well as investigated enzymes involved in their biosynthesis. PCTRs were identified to be temporally regulated in peritoneal exudates and spleens. PCTR1 and MCTR1 were each produced by human recombinant leukotriene (LT) C4 synthase (LTC4S) and glutathione S-transferases (GSTs) [microsomal GST (mGST)2, mGST3, and GST-µ (GSTM)4] from their epoxide precursors [16S,17S-epoxy-PD (ePD) and 13S,14S-epoxy-MaR (eMaR)], with preference for GSTM4. Both eMaR and ePD inhibited LTB4 production by LTA4 hydrolase. LTC4S, mGST2, mGST3, and GSTM4 were each expressed in human M1- and M2-like macrophages where LTC4S inhibition increased CTRs. Finally, PCTR1 showed potent analgesic action. These results demonstrate CTR biosynthesis in mouse peritonitis, human spleens, and human macrophages, as well as identification of key enzymes in these pathways. Moreover, targeting LTC4S increases CTR metabolomes, giving a new strategy to stimulate resolution and tissue regeneration.-Jouvene, C. C., Shay, A. E., Soens, M. A., Norris, P. C., Haeggström, J. Z., Serhan, C. N. Biosynthetic metabolomes of cysteinyl-containing immunoresolvents.


Assuntos
Vias Biossintéticas/fisiologia , Metaboloma/fisiologia , Animais , Células Cultivadas , Escherichia coli/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Peritonite/metabolismo , Peritonite/microbiologia , Baço/metabolismo , Baço/microbiologia
15.
J Am Soc Mass Spectrom ; 30(7): 1276-1283, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972724

RESUMO

Selenium (Se) functions as a cellular redox gatekeeper through its incorporation into proteins as the 21st amino acid, selenocysteine (Sec). Supplementation of macrophages with exogenous Se (as sodium selenite) downregulates inflammation and intracellular oxidative stress by effectively restoring redox homeostasis upon challenge with bacterial endotoxin lipopolysaccharide (LPS). Here, we examined the use of a standard Tandem Mass Tag (TMT)-labeling mass spectrometry-based proteomic workflow to quantitate and examine temporal regulation of selenoproteins in such inflamed cells. Se-deficient murine primary bone marrow-derived macrophages (BMDMs) exposed to LPS in the presence or absence of selenite treatment for various time periods (0-20 h) were used to analyze the selenoproteome expression using isobaric labeling and shotgun proteomic workflow. To overcome the challenge of identification of Sec peptides, we used the identification of non-Sec containing peptides downstream of Sec as a reliable evidence of ribosome readthrough indicating efficient decoding of Sec codon. Results indicated a temporal regulation of the selenoproteome with a general increase in their expression in inflamed cells in a Se-dependent manner. Selenow, Gpx1, Msrb1, and Selenom were highly upregulated upon stimulation with LPS when compared to other selenoproteins. Interestingly, Selenow appeared to be one amongst the highly regulated selenoproteins in macrophages that was previously thought to be mainly restricted to myocytes. Collectively, TMT-labeling method of non-Sec peptides offers a reliable method to quantitate and study temporal regulation of selenoproteins; however, further optimization to include Sec-peptides could make this strategy more robust and sensitive compared to other semi-quantitative or qualitative methods. Graphical Abstract.


Assuntos
Macrófagos/química , Selenoproteínas/análise , Sequência de Aminoácidos , Animais , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Masculino , Camundongos Endogâmicos C57BL , Proteômica/métodos , Selenoproteínas/imunologia , Espectrometria de Massas em Tandem/métodos
16.
J Biol Chem ; 292(35): 14544-14555, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28684424

RESUMO

Macrophages use various cell-surface receptors to sense their environment and undergo polarized responses. The cytokines, interleukin (IL)-4 and IL-13, released from T-helper type 2 (Th2) cells, drive macrophage polarization toward an alternatively activated phenotype (M2). This phenotype is associated with the expression of potent pro-resolving mediators, such as the prostaglandin (PG) D2-derived cyclopentenone metabolite, 15d-PGJ2, produced by the cyclooxygenase (Ptgs; Cox) pathway. Interestingly, IL-4 treatment of bone marrow-derived macrophages (BMDMs) significantly down-regulates Cox-2 protein expression, whereas Cox-1 levels are significantly increased. This phenomenon not only challenges the dogma that Cox-1 is only developmentally regulated, but also demonstrates a novel mechanism in which IL-4-dependent regulation of Cox-1 involves the activation of the mechanistic target of rapamycin complex (mTORC). Using specific chemical inhibitors, we demonstrate here that IL-4-dependent Cox-1 up-regulation occurs at the post-transcriptional level via the Fes-Akt-mTORC axis. Activation of AMP-activated protein kinase (AMPK) by metformin, inhibition of mTORC by torin 1, or CRISPR/Cas9-mediated genetic knock-out of tuberous sclerosis complex-2 (Tsc2) blocked the IL-4-dependent expression of Cox-1 and the ability of macrophages to polarize to M2. However, use of 15d-PGJ2 partially rescued the effects of AMPK activation, suggesting the importance of Cox-1 in macrophage polarization as also observed in a model of gastrointestinal helminth clearance. In summary, these findings suggest a new paradigm where IL-4-dependent up-regulation of Cox-1 expression may play a key role in tissue homeostasis and wound healing during Th2-mediated immune responses, such as parasitic infections.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Interleucina-4/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Proteínas de Membrana/agonistas , Modelos Imunológicos , Proteínas Quinases Ativadas por AMP/química , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-4/genética , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos Endogâmicos C57BL , Nippostrongylus/efeitos dos fármacos , Nippostrongylus/crescimento & desenvolvimento , Nippostrongylus/imunologia , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Prostaglandina D2/uso terapêutico , Proteínas Recombinantes/metabolismo , Infecções por Strongylida/imunologia , Infecções por Strongylida/metabolismo , Infecções por Strongylida/patologia , Infecções por Strongylida/prevenção & controle
17.
J Biol Chem ; 291(6): 2787-98, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26644468

RESUMO

The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trsp(fl/fl)Cre(WT) mice that express selenoproteins driven by tRNA(Sec) (Trsp), whereas N. brasiliensis-infected Trsp(fl/fl)Cre(LysM) selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ(12)-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses.


Assuntos
Regulação da Expressão Gênica/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Nippostrongylus/imunologia , Selenoproteínas/imunologia , Infecções por Strongylida/imunologia , Animais , Suplementos Nutricionais , Macrófagos/parasitologia , Macrófagos/patologia , Masculino , Camundongos , Prostaglandina D2/análogos & derivados , Prostaglandina D2/imunologia , Selênio/farmacologia , Infecções por Strongylida/tratamento farmacológico
18.
Am J Physiol Gastrointest Liver Physiol ; 309(2): G71-7, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26045617

RESUMO

Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. However, the underlying mechanisms are not well understood. Here we summarize the current literature on the pathophysiology of IBD, which is multifactorial in origin with unknown etiology. We have focused on a few selenoproteins that mediate gastrointestinal inflammation and activate the host immune response, wherein macrophages play a pivotal role. Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD.


Assuntos
Dieta , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Neoplasias do Colo/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Intestinos/microbiologia , Microbiota , Oxirredução , Fatores de Risco , Selênio/imunologia , Selenoproteínas/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA